
1.  Introduction
The spacecraft of the InSight (Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport) 
mission landed on Mars at the end of 2018 (Banerdt et al., 2020). In early 2019, it deployed the only seismic 
station, SEIS (Seismic Experiment for Interior Structure), to record the seismic vibrations on Mars (Lognonné 
et al., 2019). The InSight seismometer successfully detected ∼1,300 Marsquake events before its termination 
in December 2022 (Ceylan et al., 2023), providing indications of Martian tectonic activity (Ceylan et al., 2022; 
Drilleau et al., 2022; Giardini et al., 2020; Horleston et al., 2022; Jacob et al., 2022; Sun & Tkalčić, 2022). These 
seismic data have been used to determine the interior structures of the red planet at different scales using surface 
wave analysis (Beghein et al., 2022; Deng & Levander, 2022; Kim et al., 2022; Li et al., 2023; Xu et al., 2023), 
autocorrelation functions (ACFs) (Compaire et  al.,  2021; Deng & Levander,  2020,  2022; Qin et  al.,  2023; 
Schimmel et  al.,  2021), receiver functions (Knapmeyer-Endrun et  al.,  2021; Lognonné et  al.,  2020), anisot-
ropy analysis (Li et al., 2022), attenuation modeling (Karakostas et al., 2021) and geophysical inversion (Khan 
et al., 2021; Stähler  et al., 2021). Lognonné, Banerdt, et al. (2023) provide a review of InSight seismic research.

Here we use autocorrelation analysis of the SEIS data to identify reflections from the Martian mantle and 
core-mantle boundary (CMB) region. Claerbout  (1968) showed that the reflectivity response for a coincident 
surface source and receiver in an acoustic medium can be reconstructed by autocorrelation of the normal-incident 
plane wave response due to a source incident from below recorded by a surface receiver. This was later extended to 
elastic media and non-normal incidence cases (Frasier, 1970). Autocorrelation analysis of single-station seismic 
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recordings (e.g., ambient noise, coda waves) has been widely employed to extract body-wave reflection phases 
to reveal the subsurface structures of the Earth (Delph et al., 2019; Gorbatov et al., 2013; Kennett, 2015; Oren & 
Nowack, 2017; Phạm & Tkalčić, 2018, 2021; Qin et al., 2020; She et al., 2022; Tibuleac & von Seggern, 2012; 
Zhou & Zhang, 2021) and Moon (Nishitsuji et al., 2016, 2020). Recent autocorrelation analysis on Mars detected a 
strong P-wave reflection phase at 10.5–11.5 s two-way traveltime (Compaire et al., 2021; Deng & Levander, 2020; 
Schimmel et al., 2021). This 10.5–11.5 s signal can be interpreted as the reflection from either a mid-crust discon-
tinuity or the Martian Moho at approximately 35 km (Deng & Levander, 2020). To examine deeper seismic struc-
ture of Mars, Deng and Levander (2020), hereafter referred to as DL2020, filtered the stacked autocorrelations 
in  the low-frequency 0.05 and 0.1 Hz band and interpreted signals at ∼280 and ∼375 s as P-wave reflections 
from the Martian olivine-wadsleyite transition and CMB, respectively. Depth conversion using different reference 
velocity models determined the Martian core radius in the range of 1,790–1,870 km (Deng & Levander, 2020), 
consistent with the core radius estimation from other studies (Khan et al., 2018; Rivoldini et al., 2011; Yoder 
et al., 2003). However, Lognonné et al. (2020) identified high-amplitude seismic glitches within raw SEIS data 
which probably originate from stress relaxation within the InSight seismometer. Scholz et  al.  (2020) subse-
quently analyzed the glitch properties. These glitches may contaminate the final results of seismic analysis if 
not removed (Compaire et al., 2021). Barkaoui et al. (2021) analyzed the quasi-periodic recurrence time of these 
seismic glitches and suggest that it coincides with the arrival times of identified in low-frequency autocorrela-
tions in DL2020. Kim et al. (2021) also did autocorrelation tests that the signals interpreted as olivine-wadsleyite 
transition and CMB in DL2020 may be contaminated by the quasi-periodic high-amplitude glitches. As more 
seismic data on Mars have been collected since DL2020, further analysis of deep Martian structure is warranted.

In this work, we designed a test to resolve whether the low-frequency autocorrelation signals in DL2020 are real 
seismic reflection signals or result from instrumental noise. The high-amplitude glitches in raw SEIS data were 
first detected to generate three data sets for further analysis: (a) the raw continuous data with glitches; (b) the 
data with only detected glitches; (c) the clean continuous data after the application of glitch removal algorithms, 
hereafter referred to as the “cleaned” or “deglitched” data set (Scholz et al., 2020). We autocorrelated the ambient 
noise recorded on the vertical-components of these three data sets, raw, glitch only, and cleaned, to demonstrate 
that the low-frequency autocorrelation signals reported by DL2020 are the reflection response from deep Mars 
rather than the recurrence time of quasi-periodic glitches. Using the velocity model of Stähler et al. (2021) we 
calculated synthetic PcP seismograms to model the complexity of the PcP phase observed in the cleaned autocor-
relation. A layer of intermediate velocity between the Martian mantle and core at the Martian CMB was identified 
using a grid search to minimize the misfit between the synthetic and observed PcP phases.

2.  Data and Methods
The SEIS data were collected with a 10 and 20 Hz sampling rate in two different periods. Prior to preprocessing, 
the open-source package SEISglitch (Scholz et al., 2020) was applied to extract and remove the high-amplitude 
glitches from the raw continuous SEIS waveforms to produce cleaned and glitch-only data. Figure 1a–1c provide 
a 1-day comparison of original and cleaned continuous U-, V- and W-component data. The glitches were mostly 
detected at night time during periods of relatively low ground temperature (Figure 1d) and windspeed (Figure 1e) 
because of the lower wind- and pressure-driven noise level during the nighttime (Scholz et al., 2020). Figures 1g 
and 1h show the spectrograms of original and cleaned W-component waveforms in a 3-hr window (Figure 1f). 
The glitches are recorded as high-amplitude vertical peaks in spectrogram (Figure  1g). The glitch energy is 
effectively reduced by the glitch removal algorithm within SEISglitch package (Figure 1h). Figures S1 and S2 in 
Supporting Information S1 describe parameter selection test for glitch detection and removal, which suggest that 
parameter values used in SEISglitch have modest impact on the final autocorrelation results. The preprocessing 
procedures included the instrument response removal from the raw, clean and glitch-only continuous SEIS data 
with a broad, 0.01–3.5 Hz, bandpass filter. Data sampled at 20 Hz were decimated to 10 Hz. The continuous 
waveforms were cut into 4-hr-long segments and rotated from U-V-W into orthogonal Z-N-E channels (Compaire 
et al., 2021). We removed the mean and trend and applied a taper to each 4-hr window.

We used a workflow similar to Bensen et al. (2007) to calculate ACFs for the 3 data sets. Temporal balance and spec-
tral whitening were employed to improve the interpretability of the stacked ambient noise ACFs (Bensen et al., 2007; 
Oren & Nowack, 2017). Each individual 4-hr trace was then filtered from 0.05 to 0.1 Hz. We computed and normal-
ized the vertical component autocorrelograms by the amplitude at zero lag time for each 4-hr trace. We applied both 
linear (Linearly stacked (LS)) and phase-weighted (PWS) stacking (Schimmel & Paulssen, 1997) to produce stacked 
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autocorrelograms. The power used for PWS, which defines the significance of coherency measure (Schimmel & 
Paulssen, 1997), was empirically selected as 2 (Korenaga, 2014; Niu & Chen, 2008; Wookey & Helffrich, 2008).

3.  Results and Discussion
3.1.  Autocorrelation Results

Figure 2 compares the LS and PWS stacked autocorrelation of raw, cleaned, glitch-only and 80% glitch-only data 
sets. The 80% glitch-only data set consists of ∼80% of largest glitches within glitch-only data set. We made this 

Figure 1.  (a) Original (blue) and Cleaned (orange) U-component waveforms on 3 January 2020. (b) Same as (a) but for 
V-component. (c) Same as (a) but for W-component. (d) Corresponding ground temperature data and (e) windspeed data 
on. (f) Original (blue) and Cleaned (orange) W-component waveforms in a 3-hr window (3 January 2020 03:00:00 UTC to 3 
January 2020 06:00:00 UTC) shown as the red box in (c). (g) The spectrogram of original W-component waveform in (f). The 
black arrows identify glitch examples, which are characterized as broadband (i.e., vertical) features within the spectrogram. 
(h) The spectrogram of cleaned W-component waveform in (f), where the reduction of glitch energy is clear in comparison to 
the spectrogram in (g).
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comparison between glitch-only and 80% glitch to ascertain the importance of small glitches left by the glitch 
removal algorithm (Scholz et al., 2020). The stacked ACFs from these two data sets are almost identical for both 
LS (Figure 2a) and PWS (Figure 2b), which suggests the smaller amplitude glitches remaining in the clean data 
set will have modest impact on final ACFs.

Two signals at ∼285 and ∼385 s are clearly observed in the stacked ACF. The signal at ∼285 s in the clean ACF (red 
curves in Figures 2a and 2b) is consistent with the traveltime of the P-wave reflection from the olivine-wadsleyite 
transition as calculated for a number of Martian velocity models (Khan et al., 2023; Stähler et al., 2021).

We turn our attention to the analysis of the interpreted PcP phase at ∼385 s, leaving further discussion of the 
∼285 s signal to the Supporting Information S1 (Text S4 and Figure S5). The arrival time of this signal is consist-
ent with the prominent phase identified as the P-wave reflection from CMB reported in DL2020. The bootstrap 
calculation also indicates the observation of this PcP signal is robust (Figure S4 in Supporting Information S1). 
The ACFs of glitch-only and 80% glitch-only data do not show a prominent response at ∼385 s. We take this 
as indicating the reflection response at ∼385 s originated from Martian CMB rather than an unfortunate corre-
lation of glitches suggested by Barkaoui et al. (2021) and Kim et al. (2021). The noise sources to generate this 
deep Mars reflection signal may come from atmospheric phenomena (Nishikawa et al., 2019) or coda waves of 
Marsquakes (Lognonné, Schimmel, et al., 2023), which are less attenuated during wave propagation as Mars is a 
dry, cold and tectonically inactive planet compared with Earth (Menina et al., 2021). In the stacked raw data ACF 
there is a signal at ∼385 s, but the reflection pulse is much more complicated than in the clean waveform because 
it is contaminated by the high-amplitude seismic glitches in the raw data. The PWS stacked autocorrelation of 
the deglitched ambient noise data (red curve in Figure 2b) will be used for the comparison with synthetic results 
since the observed reflection phases are clearer and simpler than the linear stack.

3.2.  Comparison With Synthetic PcP Phases

We simulated the synthetic normal-incident PcP phases with Thomson-Haskell matrix method (Haskell, 1962; 
Thomson, 1950) for a set of velocity models (Figure 3a) from a probabilistic inversion of seismic traveltimes, 

Figure 2.  (a) Linearly stacked vertical-component autocorrelation filtered between 0.05 and 0.1 Hz using raw (black), 
clean (red), glitch-only (blue) and 80% glitch-only (green) data. The gray dashed lines mark the reflection phases from 
olivine-wadsleyite transition and core-mantle boundary. (b) Same as (a) but for phase-weighted stacking (Schimmel & 
Paulssen, 1997).
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Love number k2 and moment of inertia (Stähler et al., 2021). The comparison between synthetic and real PcP 
signals (Figure 3b) shows that the velocity model 3 standard deviations lower than the mean model of Stähler 
et al. (2021) best matches the timing of the observed PcP phase. This observation is consistent with the Mars 
orbiting surface wave results retrieved from ambient noise autocorrelation (Deng & Levander, 2022). We will use 
Stähler et al. (2021)'s mean-3σ model (Figure 3a) as a reference in later analysis.

3.3.  Grid Search for CMB Transition Zone Modeling

The PcP reflection waveform at ∼385  s is more complicated than that from the potential olivine-wadsleyite 
transition at ∼ 285 s (red curve in Figure 2b), therefore we model the CMB as a transition zone (TZ), with the 
velocity VTZ = αVmantle + (1 − α)Vcore, where 0 ≤ α ≤ 1. For α = 1, this is the mean-3σ velocity model shown in 
Figure 3a which best fits the observed PcP phase among the Stähler et al. (2021) suite of models (Figure 3b). Two 
parameters, the TZ thickness and α value, were determined by grid search to find the best combination that fits 
the observed PcP waveform shown in Figure 2b. The TZ thickness is set as 40, 60, 80, 100, and 120 km and the 
α value ranges from 0.05 to 1 with 0.05 grid size. For each TZ thickness and α value combination, we simulated 
the synthetic zero-offset PcP phase by Thomson-Haskell matrix (Haskell, 1962; Thomson, 1950) and calculated 
the correlation coefficients between the synthetic and observed PcP phases. Figures S6 to S10 in Supporting 
Information S1 showed the correlation coefficients and waveform comparisons with the observed PcP phase for 
40, 60, 80, 100, and 120 km thick CMB transition zone models, respectively.

Figure 4a illustrates the 40, 60, 80, 100, and 120 km thick CMB transition zone models that best match with the 
observed PcP phase. Figure 4b makes the comparisons between the observed PcP and the synthetics of the veloc-
ity models shown in Figure 4b. We can see the 60 km thick transition zone model (green model in Figure 4a) at 
the Martian CMB with VTZ = 8.05 km/s best fits the observed PcP phase (Figure 4b). Since a 60 km thick 1-layer 
transition zone produces a waveform correlation coefficient of 0.984 (Figure 4b), hence increasing the model 
complexity of CMB transition zone is unnecessary.

3.4.  Possible Cause of CMB Transition Zone

A similar ultralow-velocity zone (ULVZ) near CMB has been observed on Earth across different regions, such as 
Southeast Asia (Yao & Wen, 2014), Hawaii (Cottaar & Romanowicz, 2012), Mexico (Havens & Revenaugh, 2001), 
Africa and Eastern Atlantic (Helmberger et al., 2000). ULVZs normally are several tens of kilometers thick and 
may yield P-wave and S-wave velocity reduction by up to ∼10% and ∼30%, respectively (McNamara, 2019). 
In general, two theories are widely acknowledged to interpret the existence of ULVZ at Earth's lower mantle: 

Figure 3.  (a) Mean velocity model and 3 standard deviations above and below the mean model in Stähler et al. (2021). 
The solid lines are P-wave velocity profiles, and the dashed lines are S-wave velocity profiles. (b) Comparison between the 
synthetic PcP phases for the velocity models shown in (a) and the observed PcP phase from the autocorrelation of the clean 
ambient noise data (red curve in Figure 2b). The lag time represents the correlation time shift between the synthetic and 
observed PcP phases, where the positive values represent the observed PcP travels slower than synthetic PcP, and vice versa.
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(a) partial melt occurs at the location of ULVZ other than the ambient mantle (Ohtani & Maeda, 2001; Wen & 
Helmberger, 1998; Williams & Garnero, 1996); (b) core rust is formed when iron interacts with water or hydrox-
ide minerals at the lower mantle (Hu et al., 2016; Liu et al., 2017; Mao et al., 2017). The low-velocity layer near 
the Martian CMB observed in our study (Figure 4) may follow the same theories as the ULVZ observed on Earth.

Two recent studies have presented several different Martian velocity models with a basal melt layer consisting 
of a low velocity silicate melt, 100–175 km in thickness and 4.5–5.5 km/s in P-wave velocity (Khan et al., 2023; 
Samuel et al., 2023), where the transition zone thickness is thicker than our estimation of 60 km and transition 
zone P-wave velocity is lower than our estimation of 8.05 km/s. To better constrain the structure and understand 
the cause of the CMB transition zone on Mars, advanced studies on high-pressure experiment, mineralogical 
simulation, and thermodynamic modeling are required to cross-validate with the seismic observations.

4.  Conclusion
Kim et al. (2021) and Barkaoui et al. (2021) suggested that the autocorrelation signals identified as the reflec-
tion responses from olivine-wadsleyite transition and CMB (Deng & Levander, 2020) may originate from the 
quasi-periodic glitches rather than real seismic discontinuities. In this study, we applied the autocorrelation 
method on raw, clean, and glitch-only vertical-component data to investigate these claims. The prominent signal 
at ∼385  s was extracted from the autocorrelation of raw and clean waveforms but not from glitch-only data 
(Figure 2). This suggests the signal at ∼385 s was the reflection response from seismic boundaries within Mars 
rather than the recurrence time of high-amplitude glitches in raw SEIS data. We interpret the ∼385 s signal as the 
CMB. We interpret an earlier phase at ∼285 s (Figure 2) as the P-wave reflection at olivine-wadsleyite transition 
as in DL2020 (Text S4 in Supporting Information S1). The noise sources to produce deep Mars reflection signals 
may originate from atmospheric phenomena (Nishikawa et  al.,  2019) and/or Marsquake events (Lognonné, 
Schimmel, et al., 2023). The clarity of these signals likely results from the low seismic attenuation of the Martian 
interior (Menina et al., 2021). Timing of the PcP phase (∼385 s) is best matched using Stähler et al. (2021)'s 
mean-3σ model (Figure 3b), consistent with Mars orbiting surface wave R2 results (Deng & Levander, 2022). 
We then calculated synthetic PcP phases for a velocity transition zone at the CMB in which we varied velocity 
and layer thickness to model the observed complexity of the PcP waveform (Figure 4). The grid search shows 

Figure 4.  (a) The models for 40, 60, 80, 100 and 120 km thick transition zones that best match with the observed PcP phase 
(red curves in Figure 2b). (b) The comparison between the synthetic PcP phase of the velocity models shown in (a) and 
the observed PcP phase. The correlation coefficients between the synthetic and observed PcP are shown on the right side. 
The blue box marks the model with highest correlation coefficient among all models shown in (a) (The 60 km thick 1-layer 
core-mantle boundary transition zone model, with VTZ = 8.05 km/s).
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that a 60 km thick layer with VTZ = 8.05 km/s (green model in Figure 4a) produces synthetic seismograms that 
best match the observed PcP waveform (Figure 4b). Samuel et al. (2023) and Khan et al. (2023) derived a simi-
lar structure using InSight seismic data, which is interpreted as the molten silicate layer at the base of Martian 
mantle. The observed CMB transition zone on Mars (Figure 4a) can potentially enhance our understanding of 
geological history and dynamic evolution of Mars (Zhang et al., 2023).

Data Availability Statement
The InSight seismic data (InSight Mars SEIS Data Service, 2019) used in this study are available on IRIS (Incor-
porated Research Institutions for Seismology) data center. The open-source Python package SEISglitch (Scholz 
et al., 2020) were used to detect and remove glitches within InSight seismic data. The ground temperature data 
on Mars were recorded by a radiometer on the Heat Flow and Physical Properties Package (HP3) (Mueller 
et al., 2020; Spohn et al., 2018). The windspeed data were recorded by Temperature and Wind Sensor (TWINS) 
(Banfield et al., 2019, 2020). The velocity models in Stähler et al. (2021) were used to generate synthetics and 
make comparison with the observed PcP phase. Several procedures used Obspy (Krischer et al., 2015) to process 
the seismic data.
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